
cdecl versus stdcall on x86 architecture: But really a discussion of

how function calls use registers and stack

Brian R. Hall
Department of Software Technology

Champlain College
Burlington, VT, USA
hall@champlain.edu

1 Introduction

The cdecl and stdcall calling conventions (protocols) define the process (management of the stack, regis-
ters, etc.) of procedure calls. cdecl is typically the default in compilers such as Visual Studio’s C compiler
and GCC. WinAPI requires the use of stdcall, and when using an assembler such as MASM the protocol
can be set via the .MODEL directive. The two protocols are similar, but differ in the way parameters are
removed from the stack upon procedure completion. This document explains and illustrates the difference.

First, understand that when a function (procedure in assembly) is called, the function is allocated a
chunk of memory on the stack at run-time, which is called a stack frame. A stack frame is used to store
the function’s variables and parameters. It is worth saying that every function call has its own stack frame,
including main, and in the case of recursion every call has its own stack frame.

The issue at hand is what happens when the function is done running and we return whence the call
occurred. The parameters pushed on the stack as part of the call’s stack frame need to be cleaned up. This
is where calling conventions come into play, which determine the way clean up happens and other details
such as the order in which parameters are passed. Two common calling protocols are cdecl and stdcall.

Figure 1: Cleanup Responsibilities

2 Call and Return Instructions

Two of the assembly instructions at play in this scenario are call and ret.

� CALL: pushes location (address) of next instruction to the stack and transfers to new destination.

� RET: pops from top of stack, which hopefully is the location (address) of next instruction that was
pushed with CALL. Can be written two ways:
(1) ret
(2) ret count
count being added to the %esp register after completion of the return.

1

3 cdecl

The cdecl protocol is the most common across system platforms because it is based on the C language.
C supports variadic functions (variable argument lists), which means that the caller must clean up the stack
after the function call because the callee has no way of knowing how many arguments it has received and
thus cannot clean up the stack. This means cleanup code is written every time the function is called.

4 stdcall

The stdcall protocol, based on the pascal calling convention, is mainly used by the Windows API. stdcall
expects that argument lists are fixed which means the called function can know how many parameters have
been sent, and thus can clean up the stack. The advantage of this protocol is that the cleanup code is written
once, in the called function. The result is slightly smaller code that is potentially slightly faster.

As an aside not specifically discussed in this document, you can define functions as stdcall beyond the
realm of the Windows API (e.g., GCC and LLVM/clang) by defining stdcall in the following way:
#define stdcall attribute ((stdcall)) or int attribute ((stdcall)) func()

5 cdecl Example

The following code example illustrates the cdecl calling convention. The following assembly code is
written in Xcode 6.1.1, which uses modified LLVM/clang and expects AT&T syntax. The program illustrates
a function that adds two numbers.

Figure 2: cdecl Code Example

Hall - cdecl versus stdcall 2

Let us examine what this code does.

� This example assumes you understand the following:

– Stack grows down, with addresses descending.

– Every memory slot holds 4 bytes (32 bits), with each byte represented by 2 hexadecimal digits.
This should make sense as every four bits can be represented by 1 hex digit.

– Values are stored in memory in little endian form. This means the least significant byte is stored
at the start of the address and the most significant byte is stored at the end. Example: if we
wanted to store the hexadecimal value 9BFB3701 in memory it would be stored as 01 37 FB 9B.

– The letter “l” added to the instructions in the example such as “mov” becoming “movl” is just
the assembler re-writing the instructions to explicitly indicate the values are of type long.

– Pass-by-value versus pass-by-reference. This example is based on pass-by-value.

– In AT&T syntax registers are prefixed with %

� This example explains the under-the-hood assembly implementation of a C-style function call. If the
function call illustrated in this example were written in C++, the function parts might look like this:

– Variable declarations: int num1 = 2, num2 = 4;

– Prototype: int sum(int num1, int num2);

– Call: int answer = sum(num1, num2);

– Implementation: int sum(int num1, int num2){ return num1 + num2; }

� First is the .data segment (lines 1-3), which defines two variables num1 and num2. Both are of type
long (4 bytes) with num1 set to the integer value 2 and num2 set to the integer value 4.

� Next is the .text segment, which contains the executable instructions for the program. In .text, two
global procedures are declared (line 6): main (lines 7-22) and sum (lines 25-35).

� main is the entry point and where execution begins.

� Lines 9-12 are simply meant to simulate other activities going on in the program prior to a procedure
call.

1. Line 9: moves the value 10 to the %eax register

2. Line 10: decrements %eax by 1

3. Line 11: decrements %eax by 1

4. Line 12: moves the value 5 to the %ebx register

5. %eax holds the value 8 and %ebx holds the value 5

� %eax and %ebx are general purpose registers that will be used in the in the sum procedure (clobbered),
so at some point we will need to save the values the registers contain if we want to have them available
after the procedure ends. In this example, we are going to care about saving %ebx, but do not care
about saving %eax.

� Next, it is time to prepare for the procedure. cdecl pushes parameters on the stack in reverse order.
So, given a high-level function call such as sum(num1, num2); num2 will be pushed first, then num1
(lines 14-15).

� Two very important registers to keep track of in this process are the %eip and %esp registers. The
%eip register, known as the instruction pointer register, holds the address of the next instruction to
be fetched, decoded, and executed. The %esp register, known as the stack pointer register, holds the
address that represents the top of the stack (the address of the item most recently pushed to the stack).

Technical Papers - No. 2 3

� Figure 3 illustrates the state of the program prior to the parameters being pushed to stack. Notice that
%eip holds the address 0x1f90, which contains the next instruction to be executed “pushl 0x2004”.
When we step forward and execute the instruction several things will happen:

1. %eip will be incremented to 0x1f96 (the next instruction to be fetched and executed)

2. the value contained in address 0x2004 will be pushed to the stack (if we looked at memory location
0x2004 it would be the value 04 00 00 00)

3. %esp will be decremented to account for the value pushed on the stack

Figure 3: Prior to Parameters Pushed

� Figure 4 illustrates the state of the program after the two parameters have been pushed to the stack.

� The next instruction (see %eip in Figure 4) to execute is stored in 0x1f9c and is the instruction
“calll 0x1fa9”. As stated in Section 2, CALL does several things:

1. Pushes the location of the next instruction on the stack. Explanation: after the sum procedure is
done running we want to be able to pick up where we left off in the main procedure, which means
we need to save the address of the first instruction after the call. In our example that means the
value 0x1fa1 is pushed on the stack.

2. Execution then transfers to the address called, in this case 0x1fa9.

3. %eip and %esp are updated accordingly.

� Figure 5 illustrates the state of the program after the CALL instruction has been executed.

Hall - cdecl versus stdcall 4

Figure 4: After Parameters Pushed

Figure 5: After CALL Instruction

Technical Papers - No. 2 5

� Alright, remember that snippet about stack frames in the Introduction. It is time to set up the new
frame so we can refer to the arguments (the values 2 and 4) in the frame and also not have to worry
about other things being added to the stack (frame setup could have happened first based on memory
needed, see Section 7). This introduces another register called %ebp also known as the base/frame
pointer register. Typically, %ebp points to the boundary of the currently executing stack frame. It is
important to note that %esp should not be used to refer to arguments in the frame because %esp will
change if other values are pushed to the stack in the procedure (as we are about to see in our example).

� Looking back at the code in Figure 2, the first line in the sum procedure (line 26) is “push %ebp”.
This will push the value of %ebp onto the stack. Explanation: We are saving the boundary of the
previous stack frame so that we can use %ebp to store the boundary of our new stack frame (of the
sum procedure). When we are done with the sum procedure we will be able to reset %ebp to its

previous value.

� Line 27 in the code is the instruction “mov %esp, %ebp”. This effectively makes %ebp hold the same
value as what is currently in %esp. In other words, they point to the same address: the boundary of
the sum stack frame and the top of the stack.

� Earlier in this section we mentioned that for this example we wanted to hang onto the value that was
stored in %ebx (5) so it is available when we get back to main. Now is the time to save the value, since
we are about to use %ebx to help with our sum calculation. So, we push %ebx to the stack (line 28).
Also, remember we did not care to save the previous value in %eax.

� Figure 6 illustrates the state of the program after setting up the stack frame and saving %ebx.

Figure 6: After Establishing Frame and Saving %ebx

Hall - cdecl versus stdcall 6

� The time has come to do the math. We need to move our first argument, which is saved at 0xbffffa34
to a register such as %ebx. This is now easy since we know the frame boundary (%ebp) points to the
old 4-byte %ebp value and that another 4-byte value (the next instruction address) lies between the
boundary and the beginning of our arguments. We can add 8 bytes to %ebp to access the value we
need, hence “mov 8(%ebp), %ebx” (line 30). This moves the value 2 to %ebx.

� We know the second parameter was pushed first, so it should be 4 bytes further from the first, so we
add 12 bytes to %ebp, hence “mov 12(%ebp), %eax” (line 31). This moves the value 4 to %eax.

� The next step is to add the two values together, which is accomplished by “add %ebx, %eax” (line 31).
So, %eax now holds the value 6. The value is saved in %eax since that register is by default used for
return values. Explanation: %eax will not be destroyed when the sum procedure ends.

� The addition is done and we want to prepare to return to main, so we should put things back the way
they were before we left main.

� Restore %ebx with the value we wanted to save. The value is on the top of the stack so we just
“pop %ebx” (line 33), which removes the value 5 from the stack, places it in %ebx, then adjusts %esp.

� Restore %ebp with the previous base pointer address. Again, this is done by popping it off the stack
and placing the value in %ebp (line 34).

� Return (line 35). As stated in Section 2, RET pops from the top of stack, which should be the address
of the next instruction, which was pushed with CALL.

� Figure 7 illustrates the state of the program after the return from the sum procedure.

Figure 7: After Return from Sum Procedure

� The sum procedure is done, but we cannot leave the parameters on the stack or else it will interfere
with subsequent tasks in the program.

Technical Papers - No. 2 7

� The cdecl convention requires the calling function (in this case main) to clean up the stack. We know
that two 4 byte parameters are sitting on the stack, so to clean up we add 8 to %esp (line 17), moving
the stack pointer 8 bytes and back to where %esp was prior to the CALL. The cleanup instruction is
“add $8, %esp”.

� Lines 19-22 continue on with more instructions in main. %ebx is added to %eax resulting in the value
11 (line 19). %eax is then decremented twice for a final value of 9 (lines 20-21). The program ends
with the RET on line 22.

� Figure 8 illustrates the state of the program just before the final return in the main procedure.

Figure 8: Just Before main Return

6 The stdcall Difference

stdcall is different from cdecl in one significant way: the called function can perform the cleanup of the
parameters on the stack instead of the calling function. In our example, that means the cleanup can happen
as part of the sum procedure instead of in main.

As we stated in Section 2 of this document, the RET instruction can have an optional count stated. If
used, the count is added to the %esp register after completion of the return. Our code (Figure 2), implemented
in Windows-land/MASM would be nearly identical (aside from the AT&T to Intel syntax translation) with
two small changes:

1. Remove line 17 “add $8, %esp”

2. Modify line 35 to “ret 8”

Again, the advantage is that the cleanup code is not needed in main or anywhere and everywhere we call the
sum procedure. The cleanup code only occurs once, at the end of the procedure, and is a shorter instruction.

Hall - cdecl versus stdcall 8

7 What About a C++ Implementation?

Given a through review of the previous sections in this document and an understanding some of the
basics of assembly, registers, and stack, what might this program look like via a modern C++ compiler?
The following figures show sample code written in C++ (in Xcode 6.1.1) and the matching assembly code.
This implementation also shows how each function (main and sum) gets their own stack frame, which is why
%rpb is being pushed, set, and popped in both functions. Note that %rbp and %rsp are the 64-bit versions
of the 32-bit %ebp and %esp registers.

c++ code:

main function:

sum function:

Though this is slightly different than our previous example, the assembly should make sense. In the main
function, lines 2-4 set up the stack frame. Lines 5-7 are the variables being moved (saved/pushed) to the
stack. Using %rbp as the reference point, lines 8-9 move the variables (2, 4) to the registers %edi and %esi.
Line 10 is the procedure call for the sum function. The numbers will be added and returned via %eax (see
sum function). The registers are then cleared, as the value in %eax is saved to the stack (lines 11-13). The
last task is to clean up all those values that were placed on the stack and reset %rbp, which happens on
lines 14-15. Finally, the return happens on line 16. The process is almost identical to our previous example.

Technical Papers - No. 2 9

8 Alternatives

This document does not to go into detail about alternatives to cdecl and stdcall, but several do exist
and might be more useful in certain situations or on other architectures. One common alternative is fastcall
(for multiple platforms) which uses registers to store several parameters instead of stack memory, which
eliminates the overhead of cleanup. fastcall is well-suited for an architecture with more registers at its
disposal such as ARM, but fastcall and its variants (e.g., vectorcall) certainly have a place in the world of
x86/x86-64.

Hall - cdecl versus stdcall 10

	Introduction
	Call and Return Instructions
	cdecl
	stdcall
	cdecl Example
	The stdcall Difference
	What About a C++ Implementation?
	Alternatives

